Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
HNO ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695897

RESUMO

OBJECTIVE: Education in microsurgery of the ear includes staged training to allow for mastering of the complex microsurgical procedures, particularly in the context of middle ear reconstruction and cochlear implantation. Traditional surgical training includes temporal bone preparations by cadaver dissection and supervised operating room practice. As these on-site trainings are limited, there is a need to broaden education facilities in an on-line format. Therefore, a first basic on-line training for otosurgery was developed. MATERIALS AND METHODS: The system consists of an artificial temporal bone model together with a set of basic surgical instruments and implant dummies. As an essential part of the training kit, a high-resolution camera set is included that allows for connection to a video streaming platform and enables remote supervision of the trainees' surgical steps by experienced otological surgeons. In addition, a pre-learning platform covering temporal bone anatomy and instrumentation and pre-recorded lectures and instructional videos has been developed to allow trainees to review and reinforce their understanding before hands-on practice. RESULTS: Over the three courses held to date, 28 participants with varying levels of prior surgical experience took part in this otological surgical training program. The immediate feedback of the participants was evaluated by means of a questionnaire. On this basis, the high value of the program became apparent and specific areas could by identified where further refinements could lead to an even more robust training experience. CONCLUSION: The presented program of an otosurgical online training allows for basal education in practical exercises on a remote system. In this way, trainees who have no direct access to on-site instruction facilities in ear surgery now have the chance to start their otosurgical training in an educational setting adapted to modern technologies.

2.
HNO ; 2024 Apr 08.
Artigo em Alemão | MEDLINE | ID: mdl-38587661

RESUMO

BACKGROUND: The size of the human cochlear, measured by the diameter of the basal turn, varies between 7 and 11 mm. For hearing rehabilitation with cochlear implants (CI), the size of the cochlear influences the individual frequency map and the choice of electrode length. OTOPLAN® (CAScination AG [Bern, Switzerland] in cooperation with MED-EL [Innsbruck, Austria]) is a software tool with CE marking for clinical applications in CI treatment which allows for precise pre-planning based on cochlear size. This literature review aims to analyze all published data on the application of OTOPLAN®. MATERIALS AND METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied to identify relevant studies published in the PubMed search engine between January 2015 and February 2023 using the search terms "otoplan" [title/abstract] OR "anatomy-based fitting" [title/abstract] OR "otological software tool" [title/abstract] OR "computed tomography-based software AND cochlear" [title/abstract]. RESULTS: The systematic review of the literature identified 32 studies on clinical use of OTOPLAN® in CI treatment. Most studies were reported from Germany (7 out of 32), followed by Italy (5), Saudi Arabia (4), the USA (4), and Belgium (3); 2 studies each were from Austria and China, and 1 study from France, India, Norway, South Korea, and Switzerland. In the majority of studies (22), OTOPLAN® was used to assess cochlear size, followed by visualizing the electrode position using postoperative images (5), three-dimensional segmentation of temporal bone structures (4), planning the electrode insertion trajectory (3), creating a patient-specific frequency map (3), planning of a safe drilling path through the facial recess (3), and measuring of temporal bone structures (1). CONCLUSION: To date, OTOPLAN® is the only DICOM viewer with CE marking in the CI field that can process pre-, intra-, and postoperative images in the abovementioned applications.

3.
Audiol Neurootol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38479363

RESUMO

BACKGROUND: Correct individual tonotopic frequency stimulation of the cochlea plays an important role in the further development of anatomy based cochlear implantation. In this context frequency specific fitting of the basal electrode contact with a normal insertion depth can be difficult since it is often placed in a frequency range higher than 10 kHz and current audio processors only stimulate for frequencies up to 8.5 kHz due to microphone characteristics. This results in a mismatch of the high frequencies. Therefore, this study represents a proof of concept for a tonotopic correct insertion and aims to develop an algorithm for a placement of the basal electrode below 8.5 kHz in an experimental setting. METHODS: Pre- and postoperative flat-panel volume CT scans with secondary reconstructions were performed in 10 human temporal bone specimens. The desired frequency location for the most basal electrode contact was set at 8.25 kHz. The distance from the round window to the position where the basal electrode contact was intended to be located was calculated preoperatively using 3D-curved multiplanar reconstruction and a newly developed mathematical approach. A specially designed cochlear implant electrode array with customized markers imprinted on the silicone of the electrode array was inserted in all specimens based on the individually calculated insertion depths. All postoperative measurements were additionally validated using an otological planning software. RESULTS: Positioning of the basal electrode contact was reached with only a small mean deviation of 37 ± 399 Hz and 0.06 ± 0.37 mm from the planned frequency of 8.25 kHz. The mean rotation angle up to the basal electrode contact was 51 ± 5 °. In addition, the inserted electrode array adequately covered the apical regions of the cochleae. CONCLUSION: Using this algorithm, it was possible to position the basal electrode array contact in an area of the cochlea that could be correctly stimulated by the existing speech processors in the context of tonotopic correct fitting.

4.
Otol Neurotol ; 45(3): e234-e240, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38238926

RESUMO

HYPOTHESIS: Measurements of the cochlear duct length (CDL) are dependent on the resolution of the imaging dataset. BACKGROUND: Previous research has shown highly precise cochlear measurements using 3D-curved multiplanar reconstruction (MPR) and flat-panel volume computed tomography (fpVCT). Thus far, however, there has been no systematic evaluation of the imaging dataset resolution required for optimal CDL measurement. Therefore, the aim of this study was to evaluate the dependence of CDL measurement on the resolution of the imaging dataset to establish a benchmark for future CDL measurements. METHODS: fpVCT scans of 10 human petrous bone specimens were performed. CDL was measured using 3D-curved MPR with secondary reconstruction of the fpVCT scans (fpVCT SECO ) and increasing resolution from 466 to 99 µm. In addition, intraobserver variability was evaluated. A best-fit function for calculation of the CDL was developed to provide a valid tool when there are no measurements done with high-resolution imaging datasets. RESULTS: Comparison of different imaging resolution settings showed significant differences for CDL measurement in most of the tested groups ( p < 0.05), except for the two groups with the highest resolution. Imaging datasets with a resolution lower than 200 µm showed lower intraobserver variability than the other resolution settings, although there were no clinically unacceptable errors with respect to the Bland-Altman plots. The developed best-fit function showed high accuracy for CDL calculation using resolution imaging datasets of 300 µm or lower. CONCLUSION: 3D-curved MPR in fpVCT with a resolution of the imaging dataset of 200 µm or higher revealed the most precise CDL measurement. There was no benefit of using a resolution higher than 200 µm with regard to the accuracy of the CDL measurement.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Tomografia Computadorizada por Raios X/métodos , Ducto Coclear/cirurgia , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Tomografia Computadorizada de Feixe Cônico , Osso Petroso/diagnóstico por imagem , Osso Petroso/cirurgia , Implante Coclear/métodos
5.
Acta Otolaryngol ; 143(11-12): 931-935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127466

RESUMO

Background: The cochlear aqueduct (CA), which connects the scala tympani and the subarachnoid space, and its accompanying structures appear to have a significant relevance during cochlear implantation and an accurate visualization in clinical imaging is of great interest. Aims and Objective: This study aims to determine which potential and limitations clinically available imaging modalities have in the visualization of the CA. Methods: Micro-CT, flat-panel volume computed tomography with and without secondary reconstruction (fpVCT, fpVCTseco) and multislice computed tomography (MSCT) of 10 temporal bone specimen were used for 3D analysis of the CA. Results: FpVCTseco proved superior in visualizing the associated structures and lateral portions of the CA, which merge into the basal turn of the cochlea. All clinical imaging modalities proved equal in analyzing the length, total volume of the CA and its area of the medial orifice. Conclusion: The choice of the most accurate clinical imaging modality to evaluate the CA and its associated structures depends on the clinical or scientific question. Furthermore, this study should provide a basis for further investigations analyzing the CA.


Assuntos
Implante Coclear , Implantes Cocleares , Aqueduto da Cóclea/diagnóstico por imagem , Aqueduto da Cóclea/cirurgia , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Implante Coclear/métodos , Osso Temporal/cirurgia , Microtomografia por Raio-X
6.
Cochlear Implants Int ; 24(3): 144-154, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36617441

RESUMO

OBJECTIVES: In cochlear implantation, preoperative prediction of electrode position has recently gained increasing attention. Currently, planning is usually done by multislice CT (MSCT). However, flat-panel volume CT (fpVCT) and its secondary reconstructions (fpVCTSECO) allow for more precise visualization of the cochlea. Combined with a newly developed otological planning software, the position of every single contact can be effectively predicted. In this study it was investigated how accurately radiological prediction forecasts the postoperative electrode localization and whether higher image resolution is advantageous. METHODS: Utilizing otological planning software (OTOPLAN®) and different clinical imaging modalities (MSCT, fpVCT and fpVCTSECO) the electrode localization [angular insertion depth (AID)] and respective contact frequencies were predicted preoperatively and examined postoperatively. Furthermore, inter-electrode-distance (IED) and inter-electrode-frequency difference (IEFD) were evaluated postoperatively. RESULTS: Measurements revealed a preoperative overestimation of AID. Corresponding frequencies were also miscalculated. Determination of IED and IEFD revealed discrepancies at the transition from the basal to the middle turn and round window to the basal turn. All predictions and discrepancies were lowest when using fpVCTSECO. CONCLUSION: The postoperative electrode position can be predicted quite accurately using otological planning software. However, because of several potential misjudgments, high-resolution imaging, such as offered by fpVCTSECO, should be used pre- and postoperatively.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Implante Coclear/métodos , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Tomografia Computadorizada de Feixe Cônico , Software
7.
Otol Neurotol ; 43(10): 1176-1180, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351223

RESUMO

OBJECTIVE: To evaluate a new methodological approach of applying anatomy-based fitting (ABF) in experienced cochlear implant (CI) users. PARTICIPANTS: Three experienced unilateral and bilateral CI users with postlingual hearing loss. INTERVENTION: Postoperative imaging, via a high-volume Dyna computed tomography, and exact electrode measurement positions were integrated into the clinical fitting software following a new procedure, which adapted individual frequency bandwidths within the audio processor. MAIN OUTCOME MEASURES: Speech perception in quiet and noise, clinical mapping, and self-perceived level of auditory benefit were assessed. RESULTS: For each CI user, ABF mapping provided better speech perception in quiet and in noise compared with the original clinical fitting mapping. In addition, ABF mapping was accepted in CI users despite unequal bilateral array insertion depths and lengths; however, acceptance was only established if the point of first electrode contact was less than 230 Hz. CONCLUSIONS: ABF mapping increased the acceptance in CI users with longer electrode arrays and in bilateral CI users who were unsatisfied with their device experience. A larger prospective, randomized investigation is currently underway to assess longitudinal outcomes with ABF mapping.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Humanos , Estudos Prospectivos , Implante Coclear/métodos , Ruído
8.
Sci Rep ; 12(1): 13426, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927465

RESUMO

This proof of concept describes the use of evoked electromyographic (EMG) activation of the facial nerve for intraoperative monitoring of the electrode insertion during cochlear implantation (CI). Intraoperative EMG measurements from the facial nerve were conducted in nine patients undergoing CI implantation. Electric current pulses were emitted from contacts on the CI array during and immediately after electrode insertion. For control, the results of EMG measurements were compared to postoperative flat panel volume computed tomography scans with secondary reconstruction (fpVCTSECO). During insertion, the EMG response evoked by the electrical stimulation from the CI was growing with the stimulating contact approaching the facial nerve and declined with increasing distance. After full insertion, contacts on the apical half of the CI array stimulated higher EMG responses compared with those on the basal half. Comparison with postoperative imaging demonstrated that electrode contacts stimulating high EMG responses had the shortest distances to the facial nerve. It could be demonstrated that electrically evoked EMG activation of the facial nerve can be used to monitor the progress during CI electrode insertion and to control the intracochlear electrode position after full insertion.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/diagnóstico por imagem , Cóclea/fisiologia , Cóclea/cirurgia , Implante Coclear/métodos , Nervo Coclear/fisiologia , Estimulação Elétrica , Nervo Facial/fisiologia , Humanos
9.
Laryngorhinootologie ; 101(5): 428-441, 2022 05.
Artigo em Alemão | MEDLINE | ID: mdl-35500581

RESUMO

Personalized care in the context of cochlear implantation is becoming increasingly important. Choosing the right electrode could improve speech understanding. The measurement of the cochlear length plays an important role: preoperatively, in order to select a suitable electrode length; postoperatively, on the one hand to check the correct electrode position, on the other hand to enable anatomically based fitting of the electrode contacts. Of the various possible localizations of the CDL measurements within the cochlear turns, the one on the organ of Corti (CDLOC) is the most frequently used and clinically most important. In the CDL measurement, a direct and indirect evaluation can be distinguished. There is also the possibility of reconstructing and measuring the CDL in 3D and calculating it mathematically, e.g. using spiral equations. In this context, measurements based on radiological imaging are gaining increasing importance. Therefore, if there is the possibility of performing higher-resolution imaging, this should be strived preoperatively in order to enable the most precise possible procedure and thus a good outcome. Otological planning software can help to create an interface between new findings regarding CDL measurement and higher-resolution imaging for an individualized cochlear implantation.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Ducto Coclear/cirurgia , Implante Coclear/métodos , Humanos , Tomografia Computadorizada por Raios X/métodos
10.
Cochlear Implants Int ; 23(1): 32-42, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34519256

RESUMO

OBJECTIVE: There is still a lack in precise postoperative evaluation of the cochlea because of strong artifacts. This study aimed to improve accuracy of postoperative two-turn (2TL) and cochlear duct length (CDL) measurements by applying flat-panel volume computed tomography (fpVCT), secondary reconstruction (fpVCTSECO) and three-dimensional curved multiplanar reconstruction. METHODS: First, 10 temporal bone specimens with or without electrode were measured in multi-slice computed tomography (MSCT), fpVCT and fpVCTSECO and compared to high-resolution micro-CT scans. Later, pre- and postoperative scans of 10 patients were analyzed in a clinical setting. RESULTS: Concerning 2TL, no statistically significant difference was observed between implanted fpVCTSECO and nonimplanted micro-CT in 10 temporal bone specimens. In contrast, there was a significant discrepancy for CDL (difference: -0.7 mm, P = 0.004). Nevertheless, there were no clinically unacceptable errors (±1.5 mm). These results could be confirmed in a clinical setting. Using fpVCTSECO, CDL was slightly underestimated postoperatively (difference: -0.5 mm, P = 0.002) but without any clinically unacceptable errors. CONCLUSION: fpVCTSECO can be successfully applied for a precise measurement of the cochlear lengths pre- and postoperatively. However, users must be aware of a slight systematic underestimation of CDL postoperatively. These results may help to refine electrode selection and frequency mapping.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Ducto Coclear/cirurgia , Implante Coclear/métodos , Tomografia Computadorizada de Feixe Cônico , Humanos , Osso Temporal/diagnóstico por imagem , Osso Temporal/cirurgia
11.
Eur Arch Otorhinolaryngol ; 279(5): 2309-2319, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34101009

RESUMO

PURPOSE: For further improvements in cochlear implantation, the measurement of the cochlear duct length (CDL) and the determination of the electrode contact position (ECP) are increasingly in the focus of clinical research. Usually, these items were investigated by multislice computed tomography (MSCT). The determination of ECP was only possible by research programs so far. Flat-panel volume computed tomography (fpVCT) and its secondary reconstructions (fpVCTSECO) allow for high spatial resolution for the visualization of the temporal bone structures. Using a newly developed surgical planning software that enables the evaluation of CDL and the determination of postoperative ECP, this study aimed to investigate the combination of fpVCT and otological planning software to improve the implementation of an anatomically based cochlear implantation. METHODS: Cochlear measurements were performed utilizing surgical planning software in imaging data (MSCT, fpVCT and fpVCTSECO) of patients with and without implanted electrodes. RESULTS: Measurement of the CDL by the use of an otological planning software was highly reliable using fpVCTSECO with a lower variance between the respective measurements compared to MSCT. The determination of the inter-electrode-distance (IED) between the ECP was improved in fpVCTSECO compared to MSCT. CONCLUSION: The combination of fpVCTSECO and otological planning software permits a simplified and more reliable analysis of the cochlea in the pre- and postoperative setting. The combination of both systems will enable further progress in the development of an anatomically based cochlear implantation.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/diagnóstico por imagem , Cóclea/cirurgia , Ducto Coclear , Implante Coclear/métodos , Tomografia Computadorizada de Feixe Cônico , Humanos , Software
12.
OTO Open ; 5(3): 2473974X211045312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595367

RESUMO

OBJECTIVE: Growing interest in measuring the cochlear duct length (CDL) has emerged, since it can influence the selection of cochlear implant electrodes. Currently the measurements are performed with ionized radiation imaging. Only a few studies have explored CDL measurements in magnetic resonance imaging (MRI). Therefore, the presented study aims to fill this gap by estimating CDL in MRI and comparing it with multislice computed tomography (CT). STUDY DESIGN: Retrospective data analyses of 42 cochleae. SETTING: Tertiary care medical center. METHODS: Diameter (A value) and width (B value) of the cochlea were measured in HOROS software. The CDL and the 2-turn length were determined by the elliptic circular approximation (ECA). In addition, the CDL, the 2-turn length, and the angular length were determined via HOROS software by the multiplanar reconstruction (MPR) method. RESULTS: CDL values were significantly shorter in MRI by MPR (d = 1.38 mm, P < .001) but not by ECA. Similar 2-turn length measurements were significantly lower in MRI by MPR (d = 1.67 mm) and ECA (d = 1.19 mm, both P < .001). In contrast, angular length was significantly higher in MRI (d = 26.79°, P < .001). When the values were set in relation to the frequencies of the cochlea, no clinically relevant differences were estimated (58 Hz at 28-mm CDL). CONCLUSION: In the presented study, CDL was investigated in CT and MRI by using different approaches. Since no clinically relevant differences were found, diagnostics with radiation may be omitted prior to cochlear implantation; thus, a concept of radiation-free cochlear implantation could be established.

13.
Sci Prog ; 104(3): 368504211032090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34397283

RESUMO

This study aimed to evaluate the feasibility and accuracy of electromagnetic navigation at the lateral skull base in combination with flat panel volume computed tomography (fpVCT) datasets. A mastoidectomy and a posterior tympanotomy were performed on 10 samples of fresh frozen temporal bones. For registration, four self-drilling titanium screws were applied as fiducial markers. Multi-slice computed tomography (MSCT; 600 µm), conventional flat panel volume computed tomography (fpVCT; 466 µm), micro-fpVCT (197 µm) and secondary reconstructed fpVCT (100 µM) scans were performed and data were loaded into the navigation system. The resulting fiducial registration error (FRE) was analysed, and control of the navigation accuracy was performed. The registration process was very quick and reliable with the screws as fiducials. Compared to using the MSCT data, the micro-fpVCT data led to significantly lower FRE values, whereas conventional fpVCT and secondary reconstructed fpVCT data had no advantage in terms of accuracy. For all imaging modalities, there was no relevant visual deviation when targeting defined anatomical points with a navigation probe. fpVCT data are very well suited for electromagnetic navigation at the lateral skull base. The use of titanium screws as fiducial markers turned out to be ideal for comparing different imaging methods. A further evaluation of this approach by a clinical trial is required.


Assuntos
Base do Crânio , Titânio , Tomografia Computadorizada de Feixe Cônico , Marcadores Fiduciais , Base do Crânio/diagnóstico por imagem , Base do Crânio/cirurgia , Tomografia Computadorizada por Raios X/métodos
14.
HNO ; 69(5): 435-444, 2021 May.
Artigo em Alemão | MEDLINE | ID: mdl-33768279

RESUMO

The use of medical apps is becoming increasingly important as it offers new solutions in healthcare. Steadily growing computing and storage capacities in combination with high-precision sensors make smartphones effective tools for medical diagnostics and treatment. The use of this technology offers immense advantages, such as direct availability or independence from opening times. However, it also harbors risks such as unfiltered data storage and transmission. The consulting physician should exercise great care when selecting and recommending apps, particularly since only a few have been certified as medical devices to date. There is a steadily growing range of products on the market for otorhinolaryngology. The scientific evidence and quality of the apps vary widely, but tools exist for their validation by physicians and patients. The present training course is intended to help increase knowledge in this new, rapidly developing area.


Assuntos
Aplicativos Móveis , Otolaringologia , Telemedicina , Atenção à Saúde , Humanos , Smartphone
15.
Lab Anim ; 54(1): 99-110, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31665969

RESUMO

In many animal experiments scientists and local authorities define a body-weight reduction of 20% or more as severe suffering and thereby as a potential parameter for humane endpoint decisions. In this study, we evaluated distinct animal experiments in multiple research facilities, and assessed whether 20% body-weight reduction is a valid humane endpoint criterion in rodents. In most experiments (restraint stress, distinct models for epilepsy, pancreatic resection, liver resection, caloric restrictive feeding and a mouse model for Dravet syndrome) the animals lost less than 20% of their original body weight. In a glioma model, a fast deterioration in body weight of less than 20% was observed as a reliable predictor for clinical deterioration. In contrast, after induction of chronic diabetes or acute colitis some animals lost more than 20% of their body weight without exhibiting major signs of distress. In these two animal models an exclusive application of the 20% weight loss criterion for euthanasia might therefore result in an unnecessary loss of animals. However, we also confirmed that this criterion can be a valid parameter for defining the humane endpoint in other animal models, especially when it is combined with additional criteria for evaluating distress. In conclusion, our findings strongly suggest that experiment and model specific considerations are necessary for the rational integration of the parameter 'weight loss' in severity assessment schemes and humane endpoint criteria. A flexible implementation tailored to the experiment or intervention by scientists and authorities is therefore highly recommended.


Assuntos
Bem-Estar do Animal , Peso Corporal , Camundongos/fisiologia , Redução de Peso , Animais , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL
16.
World J Gastroenterol ; 24(28): 3120-3129, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30065558

RESUMO

AIM: To evaluate the influence of hyperglycemia on the progression of autoimmune pancreatitis. METHODS: We induced hyperglycemia by repetitive intraperitoneal (ip) injection of 50 mg/kg streptozotocin in MRL/MpJ mice, which develop autoimmune pancreatitis due to a genetic predisposition. We compared the extent of inflammation (histological score, CD3+ lymphocytes, CD8+ T-cells, CD4+ T-cells, Foxp3+ T-helper cells) in the pancreas of hyperglycemic and normoglycemic mice. We also analyzed the number of leukocytes, lymphocytes, granulocytes and monocytes in the blood. In addition, we determined the percentage of CD3+ lymphocytes, CD8+ T-cells, CD4+ T-cells, Foxp3+ T-helper cells, Foxp3+ CD25+ T-helper and Foxp3- T-helper cells in the spleen by flow cytometry. RESULTS: Treatment with streptozotocin caused a strong induction of hyperglycemia and a reduction in body weight (P < 0.001). Severe hyperglycemia did not, however, lead to an aggravation, but rather to a slight attenuation of autoimmune pancreatitis. In the pancreas, both the histological score of the pancreas as well as the number of CD3+ lymphocytes (P < 0.053) were decreased by hyperglycemia. No major changes in the percentage of CD8+ T-cells, CD4+ T-cells, Foxp3+ T-helper cells were observed between hyperglycemic and normoglycemic mice. Hyperglycemia increased the numbers of leukocytes (P < 0.001), lymphocytes (P = 0.016), granulocytes and monocytes (P = 0.001) in the blood. Hyperglycemia also moderately reduced the percentage of CD3+ lymphocytes (P = 0.057), significantly increased the percentage of Foxp3+ T-helper cells (P = 0.018) and Foxp3+ CD25+ T-helper cells (P = 0.021) and reduced the percentage of Foxp3- T-helper cells (P = 0.034) in the spleen. CONCLUSION: Hyperglycemia does not aggravate but moderately attenuates autoimmune pancreatitis, possibly by increasing the percentage of regulatory T-cells in the spleen.


Assuntos
Doenças Autoimunes/imunologia , Hiperglicemia/imunologia , Pancreatite/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/sangue , Doenças Autoimunes/patologia , Glicemia , Peso Corporal/efeitos dos fármacos , Peso Corporal/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Hiperglicemia/sangue , Hiperglicemia/induzido quimicamente , Camundongos , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/patologia , Pancreatite/sangue , Pancreatite/patologia , Baço/citologia , Baço/imunologia , Baço/metabolismo , Estreptozocina/toxicidade , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA